More than **400 BE**

of end products are produced, sterilized, or examined using industrial accelerators annually worldwide.

More than 24 000 particle accelerators have been built globally over the past 60 years to produce charged particle beams for use in industrial processes. This number does not include the more than 11 000 particle accelerators that have been produced exclusively for medical therapy with electrons, ions, neutrons, or X-rays.

More than **24** 0000 patients have been treated by hadron therapy in Europe.

patients have been treated by hadron therapy in the world.

accelerators are used for research worldwide, with an estimated

yearly consolidated cost of

The world's largest particle accelerator, the Large Hadron Collider (LHC), is installed in a tunnel **27 km** in circumference, buried 50-175 m below ground.

The temperature of the superconducting magnets in the LHC reaches – 271 °C. In contrast, the temperature at collision point is 1000 million times hotter than that of the Sun's core.

References

Numbers related to industrial accelerators Robert W. Hamm and Marianne E. Hamm, Eds., "Introduction to the Beam Business" in Industrial Accelerators and their Applications (World Scientific, Singapore, 2012), ISBN-13 978-981-4307-04-8, pp.1–8. Numbers related to LHC CERN (European Organization for Nuclear Research) website http://home.web.cern.ch The main objective of TIARA is the integration of national and international accelerator R&D infrastructures into a single distributed European accelerator R&D facility with the goal of developing and strengthening state-of-the-art research, competitiveness and innovation in a sustainable way in the field of accelerator Science and Technology in Europe.

Besides maximizing the benefits for the owners of the infrastructures and their users, TIARA aims to establish a framework for developing and supporting strong joint European programmes:

- for accelerator Research and Development
- for education and training

• for enhancing innovation in collaboration with industry.

The means and structures required to bring about the objectives of TIARA are being developed through the TIARA Preparatory Phase project, which started in January 2011 and will run for 3 years. This project involves 11 partners from 8 countries.

Member institutes of the TIARA preparatory phase: CEA, France CERN, Switzerland CIEMAT, Spain CNRS, France DESY, Germany GSI, Germany IFJ PAN, representing the Polish consortium INFN, Italy PSI, Switzerland STFC, United Kingdom Uppsala U., representing the Nordic consortium (Denmark, Finland, Norway, Sweden)

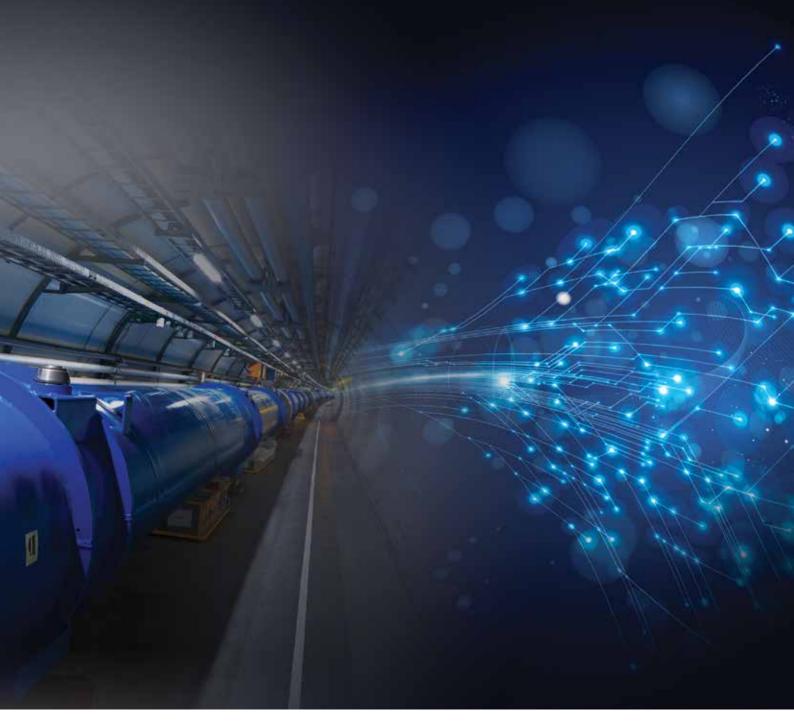
More information on

www.accelerators-for-society.org

Published by TIARA-PP Contact information at www.eu-tiara.eu Contributors: CEA/DSM/IRFU, CERN, CNRS/IN2P3, DESY, INFN, PSI, STFC Design and layout by Fabienne Marcastel (CERN Communication Group) The project Accelerators for Society is sponsored by the TIARA-PP project which is co-funded by the European

Commission within the FP7 Capacities Specific Programme

Images credits:

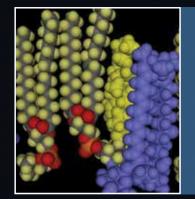

Front page: LHC-CERN, Switzerland

1- Dr DJ Barlow at Kings College London using ISIS Neutron Facility, United Kingdom

- 2- Voss et al. Nature (2010) 468, 709 (via Synchrotron Soleil, France)
- 3- Pomorzany power plant, Poland Pkuczynski
- 4- Paul Scherrer Institute, Switzerland
- 5- John Prior CHUV, Switzerland
- 6- Shutterstock.com
- 7- INFN/Domenico Santonocito, Italy
- 8- LABEC, INFN's Laboratory for Cultural Heritage and Environment, Italy
- 9- CEA/DSM/IRFU/SAp, France

Accelerators for Society

Particle accelerators are being applied throughout society. Originally developed for fundamental research, today they are used for a range of applications, from healthcare to manufacturing silicon chips to reducing pollution.




Particle accelerators were originally developed for investigating the fundamental laws of nature. These machines would do this by accelerating and colliding charged particles at extremely high energies. The resulting particles produced in these collisions would then be detected and analysed to reveal the structure of matter. However, today, accelerators also play an increasingly significant role in society and industry with an extremely important, but often unseen, impact on our everyday life.

Nowadays the vast majority of accelerators are not used for fundamental science but for industrial processes and for applications relevant to society. Among these, the most noteworthy applications include electronics, electron beam cutting and welding, hardening materials, medical diagnosis, the treatment of cancer, monitoring air pollution and climate change, the examination and dating of works of art and ancient objects, sterilising food and medical goods and cargo scanning. Possible future applications towards alternative energy sources are also being developed.

To ensure that the technological benefits of science can be exploited for more efficient and effective applications that impact on the way we all live and work as a society, it is essential to provide on-going support for accelerator research and development. Fundamental physics Materials science Solid state and condensed matter physics Biological and chemical science

Research

Materials research Beams of photons, neutrons and muons are essential tools to study materials at the atomic level.

Protein modelling

Synchrotron light allows scientists to solve the 3D structure of proteins e.g. the Chikungunya virus.

act of accelerators

Cleaning flue gases of thermal power plants

Energy & Environment Treating cancer Medical imaging

Health & Medicine

Ion impl Hardeni Welding Treating Food pr

Industi

Controlling power plant gas emission

In some pilot plants, electron beams are used to control emission of sulphur and nitrogen oxides.

Hadron therapy Proton and ion beams are well suited for the treatment of deep seated tumours.

Ion implantation electronics Many digital electronics

on ion implanter transistors and c

on Society

antation for electronics ng surfaces & materials and cutting waste & medical material eservation

Cultural heritage Authentication Cargo scanning and security Cleaner and safer nuclear power Technologies for fusion Replacing ageing research reactors

Prospects

rial applications

on <u>for</u>

ctronics rely s to build fast chips.

Hardening materials Replacing steel with X-ray cured carbon composites can reduce car energy consumption by 50%.

characterisation

Material

Cultural heritage

Particle beams are used for non-destructive analysis of works of art and ancient relics.

Energy

Accelerator technologies may bring the power of the sun "down to earth", treat nuclear waste and allow for safer operation of reactors.